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TRANSFER OF DISCRETE INCLUSIONS BY
FLUXES WITH CONCENTRATED VORTICITY
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Problems related to modeling of the motion of discrete inclusions (solid particles, drops or bubbles) in flows
with concentrated vorticity are considered. A comparative evaluation of the force factors in the equation of
motion of a test particle is made. The results of numerical modeling of the motion of discrete inclusions in
the gap between concentric rotating cylinders and a vortex flow formed by the liquid rotating with a constant
angular velocity over a fixed base are discussed. The coordinates of the points of equilibrium of the test par-
ticle in the vortex flow are found.

Introduction. Application of devices (filters, burners, vortex reactors, cyclone separators) based on the use of
vortex effects allows much room for intensifying a number of processes (mixing, combustion) and managing their sta-
bility. In particular, the favorable effect of twisting of an injected mixture of a fuel with an oxidizer is used for sta-
bilizing intensive processes of combustion and organization of effective pure burning in many industrial installations.
The perfecting of vertex facilities constitutes one of the problems on introducing energy- and resources-saving tech-
nologies into engineering practice. In many cases, the enhancement of the transfer properties of a medium is associated
with the availability of discrete inclusions (solid particles, drops or bubbles).

In calculating two-phase flows, one of the principal questions is that of constructing a model of interaction of
an individual particle, drop, or bubble with a liquid or gas flow.

The investigation of the force factors that exert their influence on the motion of discrete inclusions in vortex
flows is the concern of a rather large number of publications [1–7]. The main contribution to the interphase interaction
is made by the force of hydrodynamic resistance. In addition to the resistance force, the transfer of discrete inclusions
by a vortex flow is influenced also by other factors related to the change in the velocity and acceleration in the rela-
tive motion of a particle and a liquid, including the force of the associated mass and the buoyancy force, as well as
external body forces [1–4].

Despite the fact that relationships for calculating the forces acting on a particle, drop, or bubble are well
known [8, 9] (including those with various corrections, for example, for inertia and internal circulation motion of a liq-
uid inside a drop), the justification of taking or not taking account of any force factors requires additional investigation
with allowance for the conditions of a specific problem.

In the present work, an evaluation of force factors is made, and modeling of the motion of discrete inclusions
in flows with concentrated vorticity is considered. The results of calculations of the motion of discrete inclusions in a
vortex flow originating between concentric rotating cylinders, as well as their motion in a rotating flow of liquid over
a fixed plane, are discussed.

Types of Vortex Flows. To classify vortex flows, we will consider the motion of a liquid in a cylindrical co-
ordinate system (x, r, ϕ). The coordinate x is reckoned along the axis of rotation, whereas the coordinates r and ϕ
have their origin in the plane in which the cross-flow motion of the liquid occurs.
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The vortex flows are characterized by the vorticity vector ΩΩ  = ∇ × u, angular speed of rotation of the liquid
particle near the rotation axis uϕ ⁄ r, as well as by circulation around closed path l:

Γ = �
l

 u⋅dl ,

where dl is an infinitely small increment of l. Let us assume axial symmetry and vanishing axial and radial velocity
components: ux = ur = 0. The circumferential velocity depends only on the radial coordinate uϕ = uϕ(r). In this case,
there is only one nonzero component of vorticity in the axial direction:

Ωx = 
1

r
 
∂ruϕ
∂r

 .

Depending on the change in the tangential velocity along the radial coordinate, three types of axisymmetrical vortex
flows are distinguished [10, 11], the characteristics of which are given in Table 1.

The vorticity in free vortices is equal to zero (the flow is potential), and the liquid particles follow along the
streamlines, which represent concentric circles. With distance from the rotation axis, the tangential velocity tends to
zero. The circulation is constant in magnitude. The forced vortices have a nonzero constant vorticity and angular fre-
quency, whereas the tangential velocity and circulation increase with distance from the rotation axis. The free and
forced vortices differ in the radial position of the maximum of the circumferential velocity. In a free vortex, the maxi-
mum is located near the symmetry axis and in a forced one — on its outer boundary.

In a combined vortex there is a vortex core of radius r0. With increase in the radial coordinate, the tangential
velocity inside the core is increased and is decreased beyond it:
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The characteristics of a free-forced vortex are specified by the expressions for a forced vortex at small r’s (for
r → 0) and by the expressions for a free vortex at high r’s (for r → ∞).

The equation of vorticity transfer has the form [10]

∂ΩΩ
∂t

 + (u⋅∇) ΩΩ = − ∇1
ρ

 × ∇p + ∇ × ∇σ − ΩΩ (∇⋅u) + (ΩΩ⋅∇) u . (1)

The terms on the right-hand side of Eq. (1) describe the baroclinic moment, viscous dissipation, expansion, and exten-
sion of vortex tubes. An increase in the flow acceleration and a decrease in viscous dissipation lead to the develop-
ment of a thinner and more intense vortex core whose radius is given by the relation

TABLE 1. Characteristics of Different Types of Vortices

Flow characteristics Free vortex Forced vortex Combined vortex
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1 ⁄ 2

 .

An analysis of various terms in Eq. (1) shows that the main mechanism underlying the concentration of vorticity is
associated with extension of vortex tubes [10, 11].

Forces Acting on the Particle. The motion of a particle of a spherical shape is described by the equation

mp 
dvp

dt
 = fD + fL + fm + fA + fB + fg + fb .

The force acting on the particle is represented as a sum of the resistance force fD (of the Stokesian resistance force at
a low relative velocity of the particle and liquid), the buoyancy force fL originating as a result of the motion of a par-
ticle along the circular trajectory, the force of associated mass fm, the Archimedes force fA associated with the pressure
gradient, and the hereditary Basse′ force fB. In addition to the indicated force factors the particle experiences the action
of the gravity force and buoyancy force:

fg + fb = (ρp − ρ) Vpg .

The force of hydrodynamic resistance can be found from the relation

fD = 
1
2

 CD ρ u − v (u − v) S ,

where S is the area of the midsection of the particle (for a sphere S = πrp
2). The resistance coefficient is represented as

CD = 
16

Rep
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The function ψ1 takes into account the correction for the particle inertia. The Reynolds number is calculated from the
relative velocity of the motion of the particle and liquid:

Rep = 
2rp ρ u − v

µ
 .

The function ψ2 takes into account the internal circulation motion of a liquid inside a drop; it weakens the friction on
its surface [8]:

ψ2 = 
µ + 3µp

 ⁄ 2
µ + µp

 .

The case µp
 ⁄ µ → ∞ corresponds to the Stokes law for a solid sphere CD = 24/Rep, whereas µp

 ⁄ µ → 0 — to the flow
past a liquid drop for which CD = 16/Rep. For a gas bubble, when its spherical shape is preserved, the resistance law
is described by the formula CD = 48/Rep.

The buoyancy force originating during the motion of the particle along the circular trajectory tends to displace
the particles into the region with a lowered pressure (the region with a higher velocity), and for a spherical particle it
is represented in the form [4]

fL = CL ρVp (u − v) × ΩΩ .

At high Reynolds numbers the value CL = 1/2 is used [4, 7]. The dependence of the coefficient CL on the magnitude
of vorticity is rather weak [5].
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The force of the associated mass takes into account the increase in the inertia of the particle moving with a
variable velocity due to the necessity of setting in motion a certain mass of the liquid adjacent to the particle surface.
This additional motion of the liquid is equivalent to the motion of the fictitious mass equal to half the mass of the
liquid displaced by the sphere and moving with the same relative velocity as the particle. The force of the associated
mass is given by the relation

fm = CmρVp 
d (u − v)

dt
 .

The coefficient of the associated mass Cm is independent of the Reynolds number and is equal to 1/2. The above for-
mula has been theoretically proved for a potential flow of an ideal incompressible liquid around a particle and a creep-
ing flow past a particle [8].

In the case of a relative accelerated flow past a particle, the equation of motion of the particle is considered
in a noninertial coordinate system. The inertia force ρdu/dt is added to the external body forces, and this leads to the
isolation of the Archimedes force [8]:

fA = ρVp 
du
dt

 = ρVp 




∂u
dt

 + (u⋅∇) u

 .

The time derivative is taken relative to a fixed inertial coordinate system. The Archimedes force is defined as the
force of the inviscid origin (the derivative du/dt is expressed in terms of the pressure gradient when using the Euler
equation). The replacement of the pressure gradient by a more general relation which follows from the Navier–Stokes
equations leads, under certain conditions, to a situation where, depending on the magnitude and sign of ∆u, the relative
velocity of liquid and particle may take values from −∞ to +∞ [9].

The Basse′ force (the force of viscous recovery) takes into account the influence of the prehistory of the par-
ticle motion (because of the nonstationary state of the viscous mixing layer around the particle) and the additional re-
sistance to the motion of the particle from the liquid because of the change in its relative velocity:

fB = 6rp
2
 (πρµ)1

 ⁄ 2 ∫ 
0

t
d (u − v)

dτ
 

dτ

(t − τ)1
 ⁄ 2

 .

At high Reynolds numbers nonlinear inertia effects prevail in the relative motion of the particle and liquid, whereas
nonstationary effects in the gas phase are usually not taken into account.

Subject to the above-given relations, the equation of the motion of the particle takes the form (the Basse′ force
is not included to simplify the form of the equation)

dv

dt
 = 

1

γ + Cm
 
3CD

8rp
 u − v (u − v) + 

CL

γ + Cm
 (u − v) × ΩΩ + 

1 + Cm

γ + Cm
 
du
dt

 + 
γ − 1

γ + Cm
 g . (2)

The kinematic relation

drp

dt
 = v

(3)

allows one to calculate the radius-vector of the center of masses of the particle.
Contribution of Various Force Factors. We assume that the vorticity has only one component Ωx, which is

perpendicular to the plane in which the particle moves translationally. The ratio of the magnitude of the buoyancy
force to the magnitude of the resistance force is of the order of the rotational Reynolds number:

fL
fD

 D Reω ,
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where Reω = rp
2ω ⁄ 6ν. As the characteristic velocity we adopt the linear velocity of the points of the meridional section

of the sphere ωrp. At Reω << 1 the displacement of particles due to the action of the buoyancy force is not large.
Let U and tv denote the characteristic velocity of the particle in the relative motion and the characteristic time

of the change in the relative velocity of the particle. With allowance for the fact that

u − v D U ,   ∫ 
0

t
d (u − v)

dτ
 

dτ

(t − τ)1
 ⁄ 2

 D 
U

tv
 ∫ 
0

tv
dτ

(tv − τ)1
 ⁄ 2

  = 
2U

tv
1 ⁄ 2

 ,

it is not difficult to obtain the following estimates:

fB
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 D 
fm
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 D rp 
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2
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1 ⁄ 2 ,   fm D fA ,

where

Rep = 
2rp ρU

µ
 ;   Shp = 

2rp

Utv
 .

As the characteristic time we adopt the time of dynamic relaxation:

tv = 
8rp ρp

3CDρ u − v
 ,

then
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When ρ << ρp, the following inequalities hold:

fA D fm << fB << fD .

The Archimedes force has the same order of smallness as the force of the associated mass (the components
fA and fm should be taken into account or disregarded simultaneously). The ratio of the forces fA, fm, and fB to the
resistance force fD has the order of the phase density ratio ρ ⁄ ρp; therefore the nonstationary effects of the interaction
of phases can be neglected if ρ << ρp. The exception is provided by the motion of a particle in a flow with high ve-
locity gradients (for example, in transition of the particle through the compression shock), when the time of relaxation
is specified not by the retardation of the particle in a homogeneous flow (the gas velocity in the vicinity of the parti-
cle does not change), but rather by the change in the relative velocity of the particle due to the change in the gas
phase velocity.

At high Reynolds numbers the prevailing influence is exerted by nonlinear inertia effects, whereas the influ-
ence of nonstationary effects (often defined as hereditary ones) turns out to be small in the gas phase. The influence
of nonstationary effects should be taken into account if the local accelerations of the medium (the Archimedes force)
or the differences between the local acceleration of the medium and particle (the force of the associated mass and the
Basse′ force) are great. Then, the estimates obtained require correction by taking into account the local acceleration of
the liquid and particle.

Flow Between Rotating Coaxial Cylinders. We will consider the flow of a viscous incompressible liquid be-
tween the surfaces of two uniformly rotating (with angular velocities ω1 and ω2) coaxial horizontal cylinders of radii
r1 and r2.
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It is thought that the motion of the liquid remains purely rotational with the axial velocity component equal
to zero. The end effects connected with the finite length of the cylinders are not taken into account. A change in the
velocity occurs only as a result of the action of friction forces between neighboring cylindrical layers of the liquid,
and the velocity depends only on the distance to the symmetry axis ur = 0 and uϕ(r). The streamlines are concentric
circles located in the plane perpendicular to the common axis of the cylinders.

The equation of liquid motion in polar coordinates has the form [10]

ρuϕ
2

r
 = 
∂p
∂r

 , (4)

∂2
uϕ

∂r
2

 + 
1

r
 
∂uϕ

∂r
 − 

uϕ

r
2

 = 0 . (5)

The boundary conditions are set on the surface of the inner and outer cylinders

uϕ = r1ω1 at  r = r1 ,   uϕ = r2ω2 at  r = r2 .

Equation (4) shows that the radial change in pressure yields a force needed for preserving the motion of liq-
uid along the circular trajectories. Equation (5) represents the equality between the rate of increase in the moment of
momentum of the cylindrical layer of liquid and the moment of the resultant pair of friction forces on its inner and
outer surfaces. The solution of Eq. (5) has the form [10]

uϕ (r) = 
c1

r
 + c2r ,   c1 = 

(ω1 − ω2) r1
2
r2
2

r2
2
 − r1

2
 ,   c2 = 

ω2r2
2
 − ω1r1

2

r2
2
 − r1

2
 , (6)

whence we can obtain velocity distribution in various specific cases. Assuming that r1 = 0 for the flow inside a rotat-
ing cylinder, we have uϕ = ω2r, which corresponds to the rotation of a liquid as a solid body when all tangent
stresses are equal to zero [10]. In the case of a single cylinder rotating in an infinite mass of liquid (when r2 → ∞),
formula (6) takes the form uϕ = r1

2ω1
 ⁄ r. The velocity field in the vicinity of the cylinder is the same as in the vicinity

of a vortex filament with the stress Γ = 2πr1
2ω1 which rotates in liquid without friction [10].

Fig. 1. Forces acting on the particle located in the gap between two coaxial
horizontal cylinders.

254



With allowance for the diagram of forces (Fig. 1) acting on the particle, Eq. (2) is written as

dvr

dt
 − 

vϕ
2

r
 = 

CL

γ + Cm
 (uϕ − vϕ) Ωx − 

1 + Cm

γ + Cm
 
uϕ

2

r
 − 

γ − 1

γ + Cm
 g sin ϕ ,

dvϕ
dt

 + 
vrvϕ

r
 = 

γ
γ + Cm

 
uϕ − vϕ

tv
 − 

γ − 1

γ + Cm
 g cos ϕ .

At the instant of time t = 0 the initial conditions have the form

vr = 0 ,   vϕ = r1ω1 ,   r = r1 ,   ϕ = 0 .

Some results of calculations that illustrate the characteristic features of the motion of light and heavy particles
are demonstrated in Fig. 2. The calculations were carried out at the following values of the parameters: rp = 5⋅10−4

m, γ = 10−3–103, ω = 100 1/sec, and ν = 10−6–10−4 m2/sec. The Reynolds number was varied by a respective change
in viscosity. Integration with respect to time was carried out over the interval (0, tf] either up to the specified instant

Fig. 2. Trajectories of the particle in the gap between two concentric rotating
cylinders: a, b) γ = 10−3, r2 = 1.0; c, d) 103 and 5.0 m [a, c) Reω = 4.16; b,
d) 0.416].
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of time or to the instant of time corresponding to the fall down of the particle onto the surface of the inner or outer
cylinder. The dashed line corresponds to the particle trajectory obtained without allowance for the influence of buoy-
ancy force. In the case of light particles and low viscosity of the carrying flow, the particle moves along the cycloid,
i.e., its trajectory has equilibrium points (Fig. 2a) at which vr = vϕ = 0 (here tf = 0.115 sec). An increase in the vis-
cosity (a decrease in Reω) leads to a decrease in the amplitude of the cycloid lobes and to the fall of the particle onto
the surface of the inner cylinder (Fig. 2b). The settling of the particle occurs at the instant of time tf = 0.102 sec.

Assuming that vr = vϕ = 0, we find the equilibrium position of the particle:

tan ϕe = 2 

2CL − (1 + Cm)

 Reω = − Reω ,   re = 
(γ − 1) g sin ϕe

[2CL − (1 + Cm)] ω
2
 = (1 − γ) 

2g

ω2
 sin ϕe .

It is assumed that CL = Cm = 1/2.
The trajectory of the heavy particle resembles an untwisting spiral (Fig. 2c, d) whose number of turns de-

pends on the rotational Reynolds number. The time of integration in these figures is tf = 0.2201 sec (the settling of
the particle onto the surface of the outer cylinder occurs at tf = 0.2999 sec) and tf = 0.0622 sec, respectively. In both
cases, the particle settles onto the surface of the outer cylinder. Neglect of the buoyancy force leads to an increase in
the time of settling of the particle up to 0.1 sec (the dashed curve in Fig. 2d). During the motion of both light and
heavy particles, disregard of the action of the buoyancy force leads to substantial distortion of the results of numerical
modeling.

Rotational Motion of Liquid over a Plane. We will consider a vortex flow originating near a fixed plane
wall in the case where at a large distance from its surface the liquid rotates with a constant angular velocity [12].

For the particles of the liquid located at a large distance from the wall the centrifugal force and the radial
pressure gradient are mutually equilibrated. For the particles of the liquid located near the wall, the circumferential
velocity was lowered because of the retardation; therefore here the centrifugal force is reduced considerably, while
the radial pressure gradient directed inward remains the same as at a great distance from the wall. Near the wall,
an inward-directed radial flow originates which, due to the continuity condition, causes an ascending flow in the
axial direction.

We will superpose the plane x = 0 with the fixed wall. We assume that at a great distance from the wall the
liquid rotates as a solid body with angular velocity ω. Having introduced the dimensionless coordinate ξ = x(ω ⁄ ν)1 ⁄ 2,
the velocity distribution is written as

ux = (νω)1
 ⁄ 2H(ξ) ,   ur = rωF(ξ) ,   uϕ = rωG(ξ) .

The equations that describe the flow have the form [12]

Fig. 3. Velocity distribution in the boundary layer formed during liquid rota-
tion near a fixed base: 1) F; 2) G; 3) H.
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2F + H ′ = 0 ,   F
 2

 − G
 2

 + HF ′ − F ′′ + 1 = 0 ,   2GF + HG ′ − G ′′ = 0 . (7)

The boundary conditions are set on the wall and in the external flow:

F = 0 ,   G = 0 ,   H = 0   at   ξ = 0 ;   F = 0 ,   G = 1   at   ξ = ∞ .

The distribution of the velocity of the carrying flow is calculated by numerical integration of the system of
equations (7). The liquid velocity at the points lying on the particle trajectory is found with the aid of spline-interpo-
lation. The distribution of the velocity components are shown in Fig. 3. Conjugation of the solution with the boundary
condition at infinity occurs at ξ D 14. Up to a certain height the velocity increases in all directions. The axial velocity
component is everywhere positive (an ascending motion of liquid occurs). Near the wall the radial velocity component
is directed inward (to the rotation axis). At a great height the ascending flow damps out, since radial motion of liquid
outside occurs there.

Fig. 4. Trajectories of the particle in a rotational liquid flow above a fixed
base at rp = 8.55⋅10−6 m, Stk = 2.8, tf = 0.04 sec (on the left) and rp =
2.28⋅10−6 m, Stk = 0.2, tf = 0.07 sec (on the right). x, y, z, m.
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The trajectories of the particle in the form of an untwisting spiral are shown in Fig. 4a; Fig. 4b and c
presents the projections of the particle trajectory onto the coordinate planes. The calculations were performed at γ
= 10−3–103, ω = 500 1/sec, and µ = 1.71⋅10−5 kg/(m⋅sec). The Stokes number was varied due to the change in
the particle size.

A change in the particle size and allowance for the gravity force do not lead to a qualitative change in the
pattern of particle motion. A change in the parameters of the problem leads to an increase in the amplitude of the vi-
brations of the particle relative to the rotation axis.

Conclusions. The modeling of the motion of a sample particle in flows with concentrated vorticity is carried
out. As examples, the motion of a particle in the gap between concentric rotating cylinders and the involvement of the
particle in the rotational motion of the liquid over a fixed base are considered. During the motion of both light and
heavy particles, disregard of the buoyancy force leads to a substantial distortion of the results of numerical modeling.

The results of calculations can be applied for modeling two-phase flows with allowance of the inverse effect
of an impurity and visualization of the rotational motion of liquid.

NOTATION

c, integration constant; C, coefficient; f, force acting on the particle, N; F, dimensionless radial velocity; g,
free-fall acceleration, m/sec2; G, dimensionless circumferential velocity; H, dimensionless axial velocity; l, vector speci-
fying the direction of integration; m, mass, kg; p, pressure, Pa; r, radius, m; Re, Reynolds number; S, area, m2; Sh,
Strouhal number; Stk, Stokes number; t, time, sec; u, vector of the carrying flow velocity, m/sec; U, characteristic ve-
locity, m/sec; v, vector of particle velocity, m/sec; V, volume, m3; x, y, z, Cartesian coordinates, m; γ, ratio of particle
density to the carrying flow density, m/sec; Γ, circulation, m2/sec; µ, dynamic viscosity, kg/(m⋅sec); ν, kinematic vis-
cosity, m2/sec; ξ, dimensionless axial coordinate; ρ, density, kg/m3; σ, tensor of viscous stresses; τ, integration vari-
able; ϕ, polar angle; ψ, function; ω, angular velocity, 1/sec; ΩΩ , vorticity, 1/sec. Subscripts: b, buoyancy; D, resistance
force; e, equilibrium; f, finite instant of time; L, lifting force; p, particle; 0, vortex core; 1 and 2, inner and outer cyl-
inders.
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